Composition of Biochemical Networks using Domain Knowledge
نویسندگان
چکیده
منابع مشابه
Domain Knowledge Acquisition for Information Retrieval using Neural Networks
This paper presents the results of some experiments investigating the use of Neural Networks in the learning engine of an Connectionist Information Retrieval system called CIRS. CIRS uses the learning and generalisation capabilities of the Back Propagation learning algorithm to acquire and use application domain knowledge in the form of a sub-symbolic knowledge representation. This paper descri...
متن کاملStructuralConcepts Using Domain Knowledge
Discovering repetitive, and functional substructures in large structural databases improves the ability to interpret and compress the data. However, scientists working with a database in their area of expertise often search for predetermined types of structures, or for structures exhibiting characteristics speciic to the domain. This paper presents a method for guiding the discovery process wit...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
A Frequency Domain Approach to Sensitivity Analysis of Biochemical Networks
Steady state sensitivity analysis, as exemplified by work in Metabolic Control Analysis and Biochemical Systems Theory, has proved a potent tool in the analysis of biochemical networks. A limitation of this method is that it treats the response of a system only under step perturbations. Extension of these results to arbitrary disturbances, as addressed in this paper, can be carried out directly...
متن کاملBiochemical Knowledge Discovery Using Inductive Logic Programming
Machine Learning algorithms are being increasingly used for knowledge discovery tasks. Approaches can be broadly divided by distinguishing discovery of procedural from that of declarative knowledge. Client requirements determine which of these is appropriate. This paper discusses an experimental application of machine learning in an area related to drug design. The bottleneck here is in finding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Precedings
سال: 2010
ISSN: 1756-0357
DOI: 10.1038/npre.2010.4966.1